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Abstract Micro-electro-mechanical systems (MEMS) are involved in various fields
of nanotechnology. MEMS are characterized by complex and unclear molecular archi-
tecture. However, in most cases information about chemical composition and condi-
tions of synthesis is available. One-variable models for thermal conductivity of MEMS
are suggested. These models are based on the representation of MEMS by their chem-
ical composition and technological attributes. We have examined three random splits
of available data into the training set and validation set. The average statistical char-
acteristics of these models are quite good. Development of suggested here models is
carried out without information on molecular architecture of MEMS.
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1 Introduction

There are various ways to predict properties of molecular systems. Among them are
approaches linking computational and experimental studies. Such techniques are rep-
resented by quantitative structure—property/activity relationships (QSPRs/QSARs).
The majority of QSPRs/QSARs studies are based on representation of substances by
information on their molecular architecture [1–7]. The exception are QSPR/QSAR
models based on physicochemical parameters such as, octanol / water partition coeffi-
cient, water solubility, and others. However, also substances with unclear or extremely
large and complex molecular architecture do exist [8–11]. For example, among them
are various allotropic forms of inorganic substances [9], polymers [10], peptides [11],
and various nano substances [12].

Obviously in the case of substances with unclear molecular architecture, the stan-
dard QSPR/QSAR approach cannot be applied. In such systems the QSPR/QSAR
models can be built up using alternative information, e.g. (i) the above-mentioned
available physicochemical parameters, such as octanol water partition coefficient, sol-
ubility [13]; and interestingly, by (ii) technological conditions and parameters selected
for manufacturing of various target substances [14].

Micro-electro-mechanical systems (MEMS) [15] represent a technology that in
its most general form can be defined as miniaturization of mechanical and electro-
mechanical elements. Nanotechnology provides the ability to manipulate substances at
the atomic or molecular level to make something useful at the nano-dimensional scale.
Many devices and structures of nanotechnology are made using MEMS techniques.

The aim of the present study is estimation of optimal descriptors to be applied as a
tool of prediction of thermal conductivity of MEMS which were not examined in the
experiment.

1.1 Method

1.2 Data

Experimental data on the thermal conductivity of MEMS taken in [15]. The logarithm
of the thermal conductivity expressed in [W/m/K] has been used as the endpoint. The
collection of MEMS has been selected according to two principles (i) these MEMS
have (partially) the same technological attributes (Table 1); and (ii) their number is as
large as possible (Table 2). These substances were three times randomly split into the
sub-training set (i.e. a group of MEMS which are “producer of model”), calibration
set (i.e. a group of MEMS which are “critic of model”), test set (i.e. a group of MEMS
which are “preliminary estimator of model”), and validation set (i.e. a group of MEMS
which are “final estimator of model”).

1.3 Optimal descriptors

Optimal descriptors for MEMS are calculated as the following

DCW
(
T, Nepoch

) =
∑

CW (Codek) (1)
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Table 1 Technological
attributes and their codes, which
are using for building up model
of thermal conductivity for
MEMS

CVD chemical vapor deposition

Temperature (C) Code of the temperature

20 %1

25 %1

27 %1

80 %1

100 %1

127 %1

150 %1

200 %2

250 %2

273.1 %2

315 %3

350 %3

400 %4

425 %4

500 %5

540 %5

600 %6

650 %6

700 %7

800 %8

875 %9

1,000 %10

1,100 %11

1,200 %12

1,250 %12

1,327 %13

1,400 %14

1,530 %15

1,600 %16

2,300 %17

Status of MEMS Code of status

Ceramic 1

Single crystal 2

Cubic 3

CVD 4

Glass 5

where CW(Codek) are correlation weights for technological codes related to a MEMS
(Table 1). The T is threshold. The threshold is the coefficient for classification of
codes into two classes rare (noise) and not rare. If the frequency of a code in the
sub-training set is less than the Threshold, the correlation weight for this code will be
zero and consequently the code will be not involved in building up model. The number
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Table 2 MEMS, their codes and data on the decimal logarithm of thermal conductivity, as well three splits
of available data into the sub-training set (+), calibration set (−), test set (#), and validation set (*)

MEMS Split Codes for MEMS lgTC

1 2 3

AlN-1 + + + Al.N.%6 1.302

AlN-2 * − * Al.N.%4 1.345

AlN-3 − + + Al.N.%1 1.479

Al2O3-1 # − − Al.Al.O.O.O.2 1.699

Al2O3-2 + + * Al.Al.O.O.O.1.%14 0.735

Al2O3-3 − − + Al.Al.O.O.O.1.%1 1.399

Al2O3-4 − * # Al.Al.O.O.O.1.%3 1.189

Al2O3-5 * * + Al.Al.O.O.O.1.%5 1.165

Al2O3-6 + # # Al.Al.O.O.O.2.%1 1.634

Al2O3-7 * # + Al.Al.O.O.O.2.%3 1.293

Al2O3-8 * + − Al.Al.O.O.O.2.%8 1.084

BN-1 * # * B.N.1.%3 1.458

BN-2 − # * B.N.1.%7 1.431

BN-3 * − + B.N.1.%10 1.425

Cd − + − Cd.%1 1.986

Cr + − + Cr.%1 1.956

CrB2 − # − Cr.B.B.%1 1.311

Cr3C3 − + − Cr.Cr.Cr.C.C.C.1 2.278

GaAs + + + Ga.As.%1 1.663

Mo − + * Mo.%1 2.140

MoSi2-1 # * − Mo.Si.Si.%1.1 1.732

MoSi2-2 # + # Mo.Si.Si.%4.1 1.490

MoSi2-3 # − # Mo.Si.Si.%5.1 1.345

MoSi2-4 − # + Mo.Si.Si.%6.1 1.377

MoSi2-5 # − − Mo.Si.Si.%9.1 1.284

MoSi2-6 + * # Mo.Si.Si.%11.1 1.234

(Al2O3)3*(SiO2)2-1 + * + Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%1.1

0.782

(Al2O3)3*(SiO2)2-2 # # # Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%2.1

0.735

(Al2O3)3*(SiO2)2-3 − * * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%4.1

0.663

(Al2O3)3*(SiO2)2-4 + # − Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%6.1

0.621

(Al2O3)3*(SiO2)2-5 * − + Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%8.1

0.599

(Al2O3)3*(SiO2)2-6 # * * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%10.1

0.575

(Al2O3)3*(SiO2)2-7 * # * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%12.1

0.575

(Al2O3)3*(SiO2)2-8 − + * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.
Si.O.O.%14.1

0.575

123



2234 J Math Chem (2013) 51:2230–2237

Table 2 continued

MEMS Split Codes for MEMS lgTC

1 2 3

Ni * + # Ni.%1 1.957

Pt # + − Pt.%1 1.863

SiC-1 * − + Si.C.3.4.%1 2.082

SiC-2 + # # Si.C.3.4.%6 1.319

SiC-3 − # * Si.C.3.4.%8 1.407

SiC-4 − − # Si.C.3.4.%10 1.329

SiC-5 # − # Si.C.3.4.%13 1.539

SiO2-1 − * * Si.O.O.1.%2 0.017

SiO2-2 + * − Si.O.O.1.%4 0.097

SiO2-3 # − # Si.O.O.1.%8 0.223

SiO2-4 # # − Si.O.O.1.%12 0.320

SiO2-5 # + * Si.O.O.1.%16 0.400

SiO2-6 * − + Si.O.O.5.%1 0.140

SiO2-7 * * − Si.O.O.5.%2 0.107

SiO2-8 + # − Si.O.O.5.%3 0.134

SiO2-9 # * # Si.O.O.5.%4 0.176

SiO2-10 * # + Si.O.O.5.%7 0.255

of epochs (Nepoch) is the number of cycles (sequence of modification of correlation
weights for all codes involved in building up model) for the Monte Carlo optimization
of correlation weights. The optimal correlation weights should give the maximum for
the target function described in [16]. The predictive potential of this model should
be checked up with external validation set. Preferable values of these parameters
were defined empirically as described in the literature [17]. The space of searching to
define preferable the number of epochs (Nepoch) and the preferable threshold (T) is
the following: the range of Nepoch from 1 to 100; and the range of T from 1 to 5. The
calculation of the above-mentioned optimal descriptors has been carried out with the
CORAL software [16]. Table 3 contains correlation weights of codes which are used
to calculate optimal descriptors for split 1, 2, and 3.

2 Results and discussion

The models of decimal logarithm of thermal conductivity (lgTC) are the following:

LgTC = 0.7914 (±0.009) + 0.1556 (±0.0030) ∗ DCW (1, 44) (2)

n = 11, r2 = 0.9752, q2 = 0.9628, s = 0.097, F = 355 (sub-training set)

n = 14, r2 = 0.7977, s = 0.373 (calibration set)

n = 13, r2 = 0.9601, s = 0.419 (test set)

n = 13, r2 = 0.8229, s = 0.351 (validation set)
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Table 3 Lists of codes and their correlation weights calculated by the Monte Carlo method for three
random splits of available data into training set (it includes sub-training, calibration, and test set) and
external validation set

Split 1 Split 2 Split 3

Code CW (code) Code CW (code) Code CW (code)

%1 3.97200 %1 2.84600 %1 1.52100

%10 0.0 %10 1.29900 %10 0.0

%11 2.57800 %11 1.64050 %11 0.0

%12 0.0 %12 0.21350 %12 0.0

%13 0.0 %13 0.0 %13 0.0

%14 −0.21050 %14 0.0 %2 0.0

%16 0.0 %2 0.0 %3 0.0

%2 0.0 %3 0.0 %4 0.0

%3 1.35400 %4 0.0 %5 0.0

%4 0.22100 %5 2.32700 %6 0.0

%5 0.0 %6 0.77300 %7 0.0

%6 1.87800 %7 2.39900 %8 0.0

%7 0.0 %8 0.42400 %9 0.0

%8 0.0 %9 0.0 1 0.27900

%9 0.0 1 −1.80000 2 0.0

1 −0.38550 2 0.0 3 0.0

2 1.39700 3 −0.30400 4 0.0

3 2.32100 4 −0.33650 5 0.0

4 2.24600 5 −4.49700 B 0.0

5 −1.54250 B 1.46050 C 0.0

B 0.0 C 5.26050 Al 2.34800

C 1.81750 Al 1.20750 As 0.0

Al 1.34150 Cr −0.80100 Cd 0.0

As 1.52500 N 1.88350 Cr 0.0

Cd 0.0 O 0.06450 Ga 0.0

Cr 2.72100 Mo 6.59900 N −0.20200

Ga 1.23950 Ni 0.0 O −2.07300

N 1.93350 Si −1.40950 Mo 0.0

O 0.12700 . −0.27900 Ni 0.0

Mo 7.07400 Pt 0.0

Pt 0.0 Si −0.38350

Si −2.26050 . 0.52700

. −0.35950
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LgTC = 0.8914 (±0.010) + 0.1380 (±0.0017) ∗ DCW (1, 55) (3)

n = 12, r2 = 0.9598, q2 = 0.9490, s = 0.120, F = 239 (sub-training set)

n = 15, r2 = 0.8505, s = 0.239 (calibration set)

n = 12, r2 = 0.8811, s = 0.317 (test set)

n = 12, r2 = 0.9295, s = 0.456 (validation set)

LgTC = 0.8700 (±0.0284) + 0.2283 (±0.0145) ∗ DCW (3, 57) (4)

n = 14, r2 = 0.6742, q2 = 0.5570, s = 0.327, F = 49 (sub-training set)

n = 13, r2 = 0.8463, s = 0.379 (calibration set)

n = 12, r2 = 0.8508, s = 0.247 (test set)

n = 12, r2 = 0.6751, s = 0.321 (validation set)

The calculations were carried out for three various splits into the sub-training, cal-
ibration, test, and external (invisible) validation sets. The statistical quality of these
models is different, but can be estimated as satisfactory for all three splits. It is to
be noted the approach is flexible, since one can modify the representation of MEMS
(or the representation for other complex substances) by adding other technological
attributes if necessary (Table 1). In fact the suggested approach is paradigm “response
of a system is a mathematical function of group of impacts upon system”.

3 Conclusions

CORAL software [16] can be used to build up predictive model of thermal conductivity
of MEMS. The statistical quality of the obtained results is nearly the same for various
splits of the data carried out in this study. The input data for the applied approach can
be modified for other MEMS and/or other substances with complex architecture.

Acknowledgments We thank EC project PreNanoTox (contract 309666) and the EC project NANOP-
UZZLES (Project Reference: 309837) and EC project NanoBRIDGES (contract 295128) and the National
Science Foundation (NSF/CREST HRD-0833178, and EPSCoR Award #: 362492-190200-01/NSFEPS-
090378) for financial support.

References

1. G. Melagraki, A. Afantitis, H. Sarimveis, P.A. Koutentis, G. Kollias, O. Igglessi-Markopoulou,
Mol. Divers. 13, 301–311 (2009)

2. G. Melagraki, A. Afantitis, O. Igglessi-Markopoulou, A. Detsi, M. Koufaki, C. Kontogiorgis,
D.J. Hadjipavlou-Litina, Eur. J. Med. Chem. 44, 3020–3026 (2009)

3. J. García, P.R. Duchowicz, M.F. Rozas, J.A. Caram, M.V. Mirífico, F.M. Fernández, E.A. Castro,
J. Mol. Graph. Model. 31, 10–19 (2011)

4. J.C. Garro Martinez, P.R. Duchowicz, M.R. Estrada, G.N. Zamarbide, E.A. Castro, Int. J. Mol. Sci.
12, 9354–9368 (2011)

5. E. Ibezim, P.R. Duchowicz, E.V. Ortiz, E.A. Castro, Chemometr. Intell. Lab. 110, 81–88 (2012)
6. L.M.A. Mullen, P.R. Duchowicz, E.A. Castro, Chemometr. Intell. Lab. 107, 269–275 (2011)
7. P.K. Ojha, I. Mitra, R.N. Das, K. Roy, Chemometr. Intell. Lab. 107, 194–205 (2011)

123



J Math Chem (2013) 51:2230–2237 2237

8. A. Gajewicz, B. Rasulev, T.C. Dinadayalane, P. Urbaszek, T. Puzyn, D. Leszczynska, J. Leszczynski,
Adv. Drug Deliv. Rev. 64, 1663–1693 (2012)

9. A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, Cent. Eur. J. Chem. 9, 75–85 (2011)
10. A.A. Toropov, N.L. Voropaeva, I.N. Ruban, SSh Rashidova, Polym. Sci. A 41, 975–985 (1999)
11. A.A. Toropov, A.P. Toropova, I. Raska Jr, E. Benfenati, G. Gini, Struct. Chem. 23, 1891–1904 (2012)
12. J. Leszczynski, Nat. Nanotech. 5, 633–634 (2010)
13. A.A. Toropov, D. Leszczynska, J. Leszczynski, Comput. Biol. Chem. 31, 127–128 (2007)
14. A.A. Toropov, D. Leszczynska, J. Leszczynski, Mater. Lett. 61, 4777–4780 (2007)
15. MEMSnet, https://www.memsnet.org/material/. Accessed 9 Feb 2013
16. CORAL, http://www.insilico.eu/coral. Accessed 19 Feb 2013
17. A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, J. Leszczynski, J. Comput. Chem.

32, 2727–2733 (2011)

123

https://www.memsnet.org/material/
http://www.insilico.eu/coral

	Optimal descriptor as a translator of eclectic information into the prediction of thermal conductivity of micro-electro-mechanical systems
	Abstract
	1 Introduction
	1.1 Method
	1.2 Data
	1.3 Optimal descriptors

	2 Results and discussion
	3 Conclusions
	Acknowledgments
	References


